Los números aureos
INTRODUCCIÓN.-
El número áureo, F, fue el primer número raro es decir irracional descubierto hace muchos siglos por los magníficos matemáticos griegos. Profilaxis, un matemático de esa escuela que medía 4 metros de eslora, lo encontró debajo de una zarzamora mientras buscaba la proporción perfecta -que había perdido su hermana Clítoris de Joroña paseando por el campo.
Sin embargo, hasta que no lo vio, Pitágoras no se lo creyó. Ese fue el origen de la famosa frase "si no lo veo, no lo creo".
Efectivamente, el número era raro, cuando fue descubierto tenía esta forma: ?
Pero los griegos, muy hábiles, lo desenredaron y quedó así: F, y le llamaron número áureo, porque sonaba como muy chico.
Ya sabemos que los griegos se preocupaban mucho por la imagen. Profilaxis no estuvo de acuerdo, pues él quería ponerle su nombre y llamarle número profilaxis, pero sus compañeros lo descartaron por razones estéticas.
Numero áureo
Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como "unidad" sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.
El número áureo, también conocido como "número de oro" o "divina proporción", es una constante que percibimos a diario, aunque apenas nos demos cuenta. Aparece en las proporciones de edificios, cuadros, esculturas, e incluso en el cuerpo humano. Un objeto que respeta la proporción marcada por el número áureo transmite a quien lo observa una sensación de belleza y armonía. Veamos un poco más en qué consiste.
El número áureo es el punto en que las matemáticas y el arte se encuentran. Existen en matemáticas tres constantes que son definidas con una letra griega:
p=(3,14159…).
Pi, es la relación entre la longitud de la circunferencia y su diámetro.
e=(2,71828…)
e, es el límite de la sucesión de término general (1+1/n)^n. e es el único número real cuyo logaritmo natural es 1.
F= (1,61803…).
Phi, el número de oro. Matemáticamente hablando, podemos definirlo como aquel número al que, tanto si le sumamos uno como si lo elevamos al cuadrado, sale el mismo resultado.
Los tres números tienen infinitas cifras decimales y no son periódicos (sus cifras decimales no se repiten periódicamente). Todos ellos son, por tanto, números irracionales.
Se llama "Phi" en honor al escultor griego Fidias, que ya lo aplicaba en sus creaciones. El número áureo era conocido en la antigua Grecia y se utilizó para establecer las proporciones de las partes de los templos. Por ejemplo, la planta del Partenón es un rectángulo en el que la relación entre el lado menor y el lado mayor es el número áureo. Esta misma proporción está presente en las tarjetas de crédito actuales, entre otras.

Los griegos creían en la existencia de unas proporciones armoniosas para el cuerpo, que buscaban aplicar en sus esculturas. Durante el renacimiento, dichas proporciones quedaron plasmadas en este famoso dibujo de Leonardo Da Vinci: el "Homo Vitrubio", que ilustra el libro "La Divina Proporción" de Luca Pacioli, editado en 1509.
Definición
Se dice que dos números positivos a y b están en razón áurea si y sólo si:

Para obtener el valor de
a partir de esta razón considere lo siguiente:

Que la longitud del segmento más corto b sea 1 y que la de a sea x. Para que estos segmentos cumplan con la razón áurea deben cumplir que:

Multiplicando ambos lados por x y reordenando:

Mediante la fórmula general de las ecuaciones de segundo grado se obtiene que las dos soluciones de la ecuación son


La solución positiva es el valor del número áureo, y esto es una prueba formal de que el número áureo es irracional, ya que incluye la raíz de un número primo.
Números? - ?(3) - v2 - v3 - v5 - f - a - e - p - d
| ||
Binario
|
1,1001111000110111011...
| |
Decimal
|
1,6180339887498948482...
| |
Hexadecimal
|
1,9E3779B97F4A7C15F39...
| |
Fracción continua
| ![]() | |
Algebraico
| ![]() |
HISTORIA DEL NÚMERO ÁUREO
Existen numerosos textos que sugieren que el número áureo se encuentra como proporción en ciertas estelas Babilonias y Asirias de alrededor de 2000 a. C. Sin embargo no existe documentación histórica que indique que el número áureo fue usado conscientemente por los arquitectos o artistas en la construcción de las estelas. También es importante notar que cuando se mide una estructura complicada es fácil obtener resultados curiosos si se tienen muchas medidas disponibles. Además para que se pueda considerar que el número áureo está presente, las medidas deben tomarse desde puntos relativamente obvios del objeto y este no es el caso de los elaborados teoremas que defienden la presencia del número áureo. Por todas estas razones Mario Livio concluye que es muy improbable que los babilonios hayan descubierto el número áureo.
La razón áurea
El valor numérico de esta razón, que se simboliza normalmente con la letra griega "fi" (f ), es:

La fama que tiene de estético le viene dada por el rectángulo áureo cuya altura y anchura están en la proporción 1 a f .

Rectángulo áureo
Es decir, si siendo su altura a y su anchura b se cumple que

Esto es lo primero que te sugerimos comprobar: que la mayoría de los rectángulos que nos encontramos en nuestra vida cotidiana son áureos. Para ello mide tu D.N.I., un libro, el carnet del instituto o cualquier otro rectángulo que lleves contigo y divide la medida más larga entre la más corta y comprueba si da un número aproximado a f.

Las fachadas de muchos edificios como, por ejemplo, la del Partenón también guardan una proporción aproximada a la razón áurea.
La razón áurea también podemos encontrarla en otras figuras geométricas, por ejemplo el pentágono regular, en el que la razón entre la diagonal y el lado cumple la divina proporción


Pero lo que quizás nos pueda resultar más curioso es la presencia de la razón áurea en la naturaleza. Hay enigmáticas conexiones de la espiral de los nautilus (un tipo de caracola) y las espirales de los girasoles con la razón áurea.

También los cuerpos humanos exhiben proporciones cercanas a la razón áurea, como puede verse comparando la altura total de una persona con la que hay hasta su ombligo.

El número áureo
En el arte
Durante los últimos siglos, creció el mito de que los antiguos griegos estaban sujetos a una proporción numérica específica, esencial para sus ideales de belleza y geometría. Dicha proporción es conocida con los nombres de. Aunque recientes investigaciones revelan que no hay ninguna prueba que conecte esta proporción con la estética griega, esta sigue manteniendo un cierto atractivo como modelo de belleza.
Matemáticamente nace de plantear la siguiente proporcionalidad entre dos segmentos y que dice así: "Buscar dos segmentos tales que el cociente entre el segmento mayor y el menor sea igual al cociente que resulta entre la suma de los dos segmentos y el mayor"
Sean los segmentos:
A: el mayor y B el menor, entonces planteando la ecuación es:
A/B =(A+B)/A
Cuando se resuelve se llega a una ecuación de 2do. grado que para obtener la solución hay que aplicar la resolvente cuadrática.
El valor numérico de esta razón, que se simboliza normalmente con la letra griega "fi" es:

Los griegos de la antigüedad clásica creían que la proporción conducía a la salud y a la belleza. En su libro Los Elementos (300 a. C.), Euclides demostró la proporción que Platón había denominado «la sección», y que más tarde se conocería como «sección áurea». Ésta constituía la base en la que se fundaba el arte y la arquitectura griegos; el diseño del Partenón de Atenas está basado en esta proporción. En la Edad Media, la sección áurea era considerada de origen divino: se creía que encarnaba la perfección de la creación divina. Los artistas del Renacimiento la empleaban como encarnación de la lógica divina. Jan Vermeer (1632-1675) la usó en Holanda; pero, años después, el interés por ella decreció hasta que, en 1920, Piet Mondrian (1872-1944) estructuró sus pinturas abstractas según las reglas de la sección áurea.
También conocido como la Divina Proporción, la Media Áurea o la Proporción Áurea, este ratio se encuentra con sorprendente frecuencia en las estructuras naturales así como en el arte y la arquitectura hechos por el hombre, en los que se considera agradable la proporción entre longitud y anchura de aproximadamente 1,618. Sus extrañas propiedades son la causa de que la Sección Áurea haya sido considerada históricamente como divina en sus composiciones e infinita en sus significados. Los antiguos griegos, por ejemplo, creyeron que el entendimiento de la proporción podría ayudar a acercarse a Dios: Dios «estaba» en el número.
Sin duda alguna. es cierto que la armonía se puede expresar mediante cifras, tanto en espacios pictóricos o arquitectónicos, como en el reino de la música o, cómo no, en la naturaleza. La armonía de la Sección Áurea o Divina Proporción se revela de forma natural en muchos lugares. En el cuerpo humano, los ventrículos del corazón recuperan su posición de partida en el punto del ciclo rítmico cardiaco equivalente a la Sección Áurea. El rostro humano incorpora este ratio a sus proporciones. Si se divide el grado de inclinación de una espiral de ADN o de la concha de un molusco por sus respectivos diámetros, se obtiene la Sección Áurea. Y si se mira la forma en que crecen las hojas de la rama de una planta, se puede ver que cada una crece en un ángulo diferente respecto a la de debajo. El ángulo más común entre hojas sucesivas está directamente relacionado con la Sección Áurea.

En arte y la arquitectura también se han usado con extraordinarios resultados las famosas propiedades armoniosas de a Sección Áurea. 1 las dimensiones de la Cámara Real de la Gan Pirámide se basan en la Sección Áurea; el arquitecto Le Corhusier diseño su sistema Modulor basándose en la utilización de la proporción áurea, el pintor Mondrian basó la mayoría de sus obras en la Sección Áurea: Leonardo la incluyó en muchas de sus pinturas y Claude Dehussy se sirvió de sus propiedades en la música. La Sección Áurea también surge en algunos lugares inverosímiles: los televisores de pantalla ancha, las postales, las tarjetas de crédito y las fotografías se ajustan por lo común a sus proporciones. Y se han llevado a cabo muchos experimentos para probar que las proporciones de los rostros de las top models se adecuan más estrechamente a la Sección Áurea que las del resto de la población. lo cual supuestamente explica por qué las encontramos bellas.
Propiedades algebraicas
- F es el único número real positivo tal que:
- La expresión anterior es fácil de comprobar:
- F posee además las siguientes propiedades:
- Las potencias del número áureo pueden ser escritas en función de una suma de potencias de grados inferiores del mismo número, estableciendo una verdadera sucesión recurrente de potencias.
El caso más simple es: Fn = Fn - 1 + Fn - 2, cualquiera sea n entero positivo. Este caso es una sucesión recurrente de orden k = 2, pues se recurre a dos potencias anteriores.Una ecuación recurrente de orden k tiene la forma a1un + k - 1 + a2un + k - 2 + ... + akun, donde ai es cualquier número real o complejo y k es un número natural menor o igual a n y mayor o igual a 1. En el caso anterior es k = 2, a1 = 1 y a2 = 1.Pero podemos «saltear» la potencia inmediatamente anterior y escribir:Fn = Fn - 2 + 2Fn - 3 + Fn - 4. Aquí k = 4, a1 = 0, a2 = 1, a3 = 2 y a4 = 1.Si anulamos a las dos potencias inmediatamente anteriores, también hay una fórmula recurrente de orden 6:Fn = Fn - 3 + 3Fn - 4 + 3Fn - 5 + Fn - 6En general:;k un número par,
En resumen: cualquier potencia del número áureo puede ser considerada como el elemento de una sucesión recurrente de órdenes 2, 4, 6, 8, ..., 2n; donde n es un número natural. En la fórmula recurrente es posible que aparezcan potencias negativas de F, hecho totalmente correcto. Además, una potencia negativa de F corresponde a una potencia positiva de su inverso, la sección áurea.Este curioso conjunto de propiedades y el hecho de que los coeficientes significativos sean los del binomio, parecieran indicar que entre el número áureo y el número e hay un parentesco.- El número áureo
es la unidad fundamental «e» del cuerpo
y la sección áurea
es su inversa, «
». En esta extensión el «emblemático» número irracional
cumple las siguientes igualdades:
La expresión mediante fracciones continuas es:Esta iteración es la única donde sumar es multiplicar y restar es dividir. Es también la más simple de todas las fracciones continuas y la que tiene la convergencia más lenta. Esa propiedad hace que además el número áureo sea un número mal aproximable mediante racionales que de hecho alcanza el peor grado de aproximabilidad mediante racionales posible.Representación mediante ecuaciones algebraicasEl número áureoy la sección áurea
son soluciones de las siguientes ecuaciones:
Estas corresponden al hecho de que el lado de un pentágono regular es f veces la longitud de su radio y de otras relaciones similares en el pentágrama.En 1994 se derivaron las siguientes ecuaciones relacionando al número áureo con el número de la Bestia:Lo que puede combinarse en la expresión:Sin embargo, hay que notar que estas ecuaciones dependen de que se elijan los grados sexagesimales como unidad angular, ya que las ecuaciones no se mantienen para unidades diferentes.Representación mediante raíces anidadasEsta fórmula como caso particular de una identidad general publicada por Nathan Altshiller-Court, de la Universidad de Oklahoma, en la revista American Mathematical Monthly, 1917.El teorema general dice:La expresión (donde ai = a), es igual a la mayor de las raíces de la ecuación x² - x - a = 0; o sea,Relación con la serie de Fibonacci
Si se denota el enésimo número de Fibonacci como Fn, y al siguiente número de Fibonacci, como Fn + 1, descubrimos que a medida que n aumenta, esta razón oscila siendo alternativamente menor y mayor que la razón áurea. Podemos también notar que la fracción continua que describe al número áureo producesiempre números de Fibonacci a medida que aumenta el número de unos en la fracción. Por ejemplo:=1.5,
=1.6, y
=1.615384..., lo que se acerca considerablemente al número áureo. Entonces se tiene que:
Esta propiedad fue descubierta por el astrónomo italiano Johannes Kepler, sin embargo, pasaron más de cien años antes de que fuera demostrada por el matemático inglés Robert Simson.A mediados del siglo XIX el matemático francés Jacques Phlipe Marie Binet redescubrió una fórmula que aparentemente ya era conocida por Leonhard Euler, y por otro matemático francés, Abraham de Moivre. La fórmula permite encontrar el enésimo número de Fibonacci sin la necesidad de producir todos los números anteriores. La fórmula de Binet depende exclusivamente del número áureo:
Comentarios
Publicar un comentario